
Matching Needs and Desires
Job and Candidate Matching using Machine Learning

Clemens Westrup
@ICMA 12.10.2017

Hello!
Who I am

Clemens Westrup (firstname.lastname@sanoma.com)

Data Scientist at Sanoma, a media and learning company

Background: Computer Science, Machine Learning and
Product Development

This talk

Matching Jobs and Candidates using Machine Learning

mailto:clemens.westrup@sanoma.com

Overview

1. Intro: Job Recommendations at Sanoma

2. The Challenge: Matching Jobs and Candidates

3. Approaches: A Small Deep Dive into Machine Learning

4. Learnings and Takeaways

5. Questions

20 min

10 min

Intro

• Recruitment site Oikotie Työpaikat in Sanoma’s portfolio

• Recently introduced feature: 
automatic job and candidate discovery

• Recommendations powered by our algorithm

Oikotie Työpaikat

For Job Seekers

For Recruiters

The Algorithm In the News

The Challenge

“How might we suggest

 the most relevant positions to a job seeker,

 and vice versa relevant candidates to a recruiter,  

 to help both parties find each other more easily?” 

Data is unstructured and complex

Data is sparse

Humans and their needs and desires are hard to understand

A Challenging Task for a Machine

Approaches
A Small Deep Dive into Machine Learning

Approaches

Vector Space Models

• Relevance = distance

• Candidates and Jobs are mapped into a space

• Find closest matches with a distance metric

• Space is high-dimensional

Approaches

Vector Space Models

Job Ad

Candidate

Approaches

Vector Space Models

Job Ad

Candidate

Approaches

Vector Space Models

Job Ad

Candidate
And now just imagine this with a 1000 dimensions instead.

Approaches

Constructing the Vector Space
• Basic search techniques on metadata

• Natural Language Processing

• Keyword matching

• Topic Modeling with Latent Dirichlet Allocation (LDA)

• Continuous Distributed Representations

• Behavioral Analysis

• Collaborative Filtering

• Many other techniques

Approaches
Topic Modeling with Latent Dirichlet

Allocation (LDA)

• Unsupervised Method by [Blei et al., 2003]

• Assumes process of creating documents:

 First: choose a few topics, then:

1. Pick a topic

2. Pick a word associated with the topic

3. Repeat until we have enough words

α

β

z w N

M

θ

Approaches
Topic Modeling with Latent Dirichlet

Allocation (LDA)

• Learning using Bayesian Inference

• Yields probabilities, how likely

A. each word occurs with each topic

B. each topic occurs in each document

• For new documents:  
infer its association with the topics

0.03

0.21

0.09

…

Topic 1

Topic 2

Topic 3

…

Job ad 1

0.8

0.11

0.01

…

Candidate a …

Approaches

Continuous Distributed Representations

• Commonly known as “word2vec”  
[Mikolov, 2013], roots in [Hinton, 1986]

• Neural Network based

• Learn word representations by predicting  
in which context a word appears

• Needs huge amounts of data to work  
(e.g. all of wikipedia)

input input output input input

the quick ? fox jumps

projection vector

Approaches

Continuous Distributed Representations

24

of using neural network based LMs [Language Models] is based on this observation.
This approach tries to overcome the exponential increase of parameters by sharing
parameters among similar events, and thus no longer require exact matching of the
history H.” [Mikolov, 2012, p. 17]

4.1.2 Distributed Continuous Representations

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

SpainGreece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

RomeAthens

Madrid

Ankara

Warsaw

Lisbon

Figure 7: Two-dimensional PCA projec-
tion of the 1000-dimensional Skip-gram
vectors of countries and their capital cities.
(Adapted from [Mikolov et al., 2013c])

To overcome the shortcomings of pop-
ular language models such as the N-
gram model mentioned above, much re-
cent work has focused on the study of
so-called distributed language models.
One branch of research that gained sig-
nificant attention is the work on Neu-
ral Network based Language models
(NNLMs), popularized largely through
the work of T. Mikolov and his
software realization of such a model
dubbed word2vec with interest coming
not only from the academic commu-
nity. Mikolov’s work builds on ideas
introduced in [Bengio and Bengio, 2000]
where a neural network based model was
proposed for modeling high-dimensional
discrete data, which was then applied
to the domain of language modeling
in [Bengio et al., 2003]. The idea of
learned distributed representations goes back to [Hinton, 1986]. Following the de-
scription in [Bengio and Bengio, 2000], the approach is as follows:

1. Associate with each word in the vocabulary a distributed word feature vector
(a real-valued vector in Rm),

2. Express the joint probability function of word sequences in terms of the feature
vectors of these words in the sequence

3. Learn simultaneously the word feature vectors and the parameters of that
probability function.

To achieve this, a feedforward neural network model is trained to learn the
word feature vectors or word embeddings. As input a sequence of n words is given,
each encoded using one-hot encoding or one-of-V encoding where the corresponding
indicator vectors for each word have the size of the vocabulary V . The input
word vectors are then projected linearly into a projection layer of significantly
lower dimensionality D, using a global projection matrix for across all words, and
concatenated, forming the input of size D◊N to a hidden layer of size H. The hidden

• Captures surprising semantic properties:

 v(Berlin) - v(Germany) + v(France) = v(Paris)

• This allows e.g. for analogy queries

• Several techniques to extend “word vectors”
to “document vectors”

• Allows us again to map job ads and candidate
profiles to the vector space

Approaches
Behavioral Analysis:  

Collaborative Filtering

Users x Items matrix R

Approaches

Matrix Factorization

U

Users x Factors

I

Factors x Items

x≈R

Users x Items

Matching in  
Oikotie Työpaikat

• We use a mixture of similar and additional approaches

• An API serves the results, e.g. like this:

{  
 “results”:[ 
 {“id”: 1050236, “confidence”: 0.92},  
 {“id”: 2572425, “confidence”: 0.81},  
 {“id”: 1235285, “confidence”: 0.73},  
 {“id”: 3413478, “confidence”: 0.69}  
]  
}

Evaluation
• Qualitative: Interviews, user testing, surveys

• Quantitative:

• Verify with implicit feedback (job ad visits, “apply”-clicks)

• Implement explicit feedback mechanism

• Test with rating experiment

• Can be framed as prediction or ranking problem

Learnings and Takeaways
Plan well and follow a process (e.g. double diamond)

• User need must be understood (the problem scope)

• Prototype: fail and learn (the solution scope)

• Productization according to software quality standards takes  
3x more time than you think

• Don’t forgot maintenance, privacy assessments, handovers

Capture your problem with a metric (or several ones)

• Measure from the start (validates results and helps communicating them)

• Update if needs change

Gracias
Time for Questions

Clemens Westrup
firstname.lastname@sanoma.com

